If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-22u-15=0
a = 1; b = -22; c = -15;
Δ = b2-4ac
Δ = -222-4·1·(-15)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-4\sqrt{34}}{2*1}=\frac{22-4\sqrt{34}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+4\sqrt{34}}{2*1}=\frac{22+4\sqrt{34}}{2} $
| n2/21=5 | | 5x2+14x=0 | | x^2+4x+4=100x+20x+1 | | 58.8=6(m+2.7) | | n-2/21=5 | | 88=8(m+3.8) | | 7x+5x-36=90-6x | | 75.6=7(m+3.9) | | 5/2a-5=-5 | | 5x/8x-3=3x/8x+3 | | (5/x)+(x/x+4)=(16/x^2+4x) | | (x+3)^2=24 | | 2(3y-5)=5y | | y^2+106=10y | | (x-10)(x-4)=55 | | 6x–(2x–1)=2 | | 100x^2+20x+1=16 | | 100x+20x+1=16 | | 2-(-5)+2h=-1 | | 3588=39(p+40) | | (r+6/3)=(r+8/6) | | 3x=(20) | | 3x-5/2=x-8/3 | | 3b-8=24 | | 15t^2+29t-14=0 | | 13x+13=17x-3=20 | | 13x+13=1/3 | | 3÷5g+8=2 | | 3x+2(2x+3)=13 | | 6u(4)=0 | | 5.2x-1.2=19.6 | | 13x+13+17x-3=20 |